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ABSTRACT

Existing user-level thread packages employ a "black box" design approach, where the implemen-

tation of the threads is hidden from the user. While this approach is often sufficient for application-

level programmers, it hides critical design decisions that system-level programmers must be able

to change in order to provide efficient service for high-level systems. By applying the principles

of Open Implementation Analysis and Design, we construct a new user-level threads package that

supports common thread abstractions and a well-defined meta-interface for altering the behavior

of these abstractions. As a result, system-level programmers will have the advantages of using

high-level thread abstractions without having to sacrifice performance, flexibility, or portability.

This research was partially supported by the National Aeronautics and Space Administration under NASA
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1 Introduction

Lightweight threads are useful for a variety of purposes. An application-level programmer will

typically use threads to facilitate asynchronous scheduling for a number of related tasks. For

example, consider an event-driven application, such as Xlib [25], where lightweight threads are

used to schedule tasks for execution based on an external event. In this context, threads free the

programmer from the details of dynamic scheduling. Fine-grain control over the behavior of a

thread is typically not needed. There is no shortage of lightweight thread packages for application-

level programmers, and a short list of such systems would likely include pthreads [22] (the POSIX

interface for lightweight threads [16]), Solaris threads [26], fastthreads [2], and cthreads [23].

Lightweight threads are also useful for supporting independent tasks generated by parallel or

concurrent programming languages. In this context, system-level programmers use lightweight

threads as a major building-block of a multithreaded runtime system. For example, each of the

following languages is supported by a multithreaded runtime system: CC++ [12], Fortran M [12],

Opus [15], Orca [7], PC++ [8], Sisal [13], Split-C [11], and SR [3]. However, none of these multi-

threaded runtime systems employs a single thread package for all platform implementations, and

few use any of the lightweight thread packages listed in the preceding paragraph. While this may

be surprising, there are several reasons why multithreaded runtime system designers shy away from

standard lightweight thread packages, including:

1. Lack of flexibility. Existing thread packages are implemented as black boxes, so it is almost al-

ways impossible to change the detailed behavior of threads, mutexes, run lists, etc. However,

most multithreaded runtime systems require explicit control over scheduling decisions and

the interaction of threads with a communication substrate. For example, the Panda runtime

system [7], which supports the Orca programming language [5], requires preemptive schedul-

ing of threads with priorities, and the ability to turn preemption off and explicitly poll for

incoming messages when there are no active threads. On the other hand, the runtime system

that supports the SR programming language [3] assumes non-preemptive scheduling, in which

the scheduler is free to select the next thread to the executed from a list of runnable threads.

Both languages support communication between multiple processors, and this communication

directly affects thread scheduling.

2. Lack of performance. Existing thread packages are geared towards supporting application-

level programmers, who typically require threads to behave as normal Unix processes would.

However supporting this behavior, including proper signal handling, adds a good deal of

overhead to the thread operations. In contrast, most multithreaded runtime systems W'_nt

bare-bones threads that are very fast, and to which they will add the complexities they

require. The key here is that the runtime system designer, rather than the thread package

designer, is in control of the tradeoffs between functionality and performance.

3. Lack of portability. Multithreaded runtime systems must execute on a wide variety of hard-

ware and operating system platforms, which is extremely problematic for most lightweight

thread packages.

4. Lack of information. Multithreaded runtime system designers often require tracing informa-

tion for debugging and statistics information for tuning. Existing thread packages provide



little or nosupportfor obtainingthis sortof informationabouttheexecutionof the threads.

The central problemwith usingexistingthread packagesto support multithreadedruntime
systemsis that mostexistingthreadpackagesaredesignedas"black-boxes,"providingonly avery
limited numberof waysin whichbehaviorcanbemodified. This is typically limited to altering
thedefaultsizefor a threadstackandchoosingbetweenasmall,fixed-numberof pre-implemented
threadschedulingpolicies.This is almostalwaystoo restrictivefor system-levelprogrammers,and
somostendup "rolling their own" threadpackages.

Though"blackbox" abstractionsareeffectivefor constructingcomplexsystemsbecausethey
hidethe detailsof an implementation,they don't alwaysworkbecause"therearetimeswhenthe
implementationstrategyfor a modulecannotbedeterminedbeforeknowinghowthe modulewill
be usedin a particular system" [18]. As we'veseen,this is particularly true for multithreaded
runtimesystemsemployinglightweightthreads,wheremanyof the implementationdecisionsare
to bemadeby the runtimesystemdesigner,not thethreadpackagedesigner.Recently,theobject-
orientedresearchcommunityhasbeenaddressingthe issueof improveddesignmethodologiesfor
substrate(system-level)software[9,18,19,20,27].Fromthis research,a newdesignmethodology
for substratesoftwarehasemerged,calledOpenImplementation[18,19]. The basicideabehind
this newdesignmethodologyis to openthe proverbialblack box usinga well-definedinterface,
calleda meta-interface, that describes how the abstractions provided in the user-interface are to

behave.

In this paper we provide an Open Implementation analysis and design of lightweight, user-level

threads. As a proof-of-concept, we have implemented this design to create a thread library called

OpenThreads. The goal of this research is to produce a lightweight threads library that provides

both a simple user-level interface and a robust meta-level interface for altering the behavior of the

abstractions, so that a single threads package can be efficient, flexible, and portable. In addition, we

extend the Open Implementation design methodology to address portability concerns by defining

a system-level interface that clearly defines underlying dependencies.

The remainder of this paper is divided into five sections. Section 2 provides background on

threads and Open Implementation analysis and design. Section 3 provides the Open Implementa-

tion analysis and design for OpenThreads, and discusses the three interfaces. Section 4 provides a

discussion of our design relating to performance and open issues. Section 5 outlines related research

projects, and we conclude in Section 6.

2 Background .-

In this section we provide background information for readers unfamiliar with either lightweight,

user-level threads or Open Implementation Analysis and Design.

2.1 User-level Threads

User-level threads provide the ability for a programmer to create and control multiple, independent

units of execution entirely outside of the operating system kernel (i.e., in user-space). The state of

these threads is often minimal, consisting usually of an execution stack allocated in heap space and

the set of CPU registers, and so these threads are often termed lightweight.
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Figure 1: "Black-box" _nd "Open Implementation" designs

Since the OS kernel controls addressing and scheduling for the CPU, user-level threads must

be multiplexed atop one or more kernel-level entities, such as Unix processes [4], Mach kernel

threads [1], or a Sun Lightweight Processes (LWP) [24]. This "multiplexing" is commonly referred

to as scheduling of the user-level threads. The kernel-entity (hereafter referred to as a "process")

also provides a common address space that is sh_red by all threads multiplexed onto that process.

Synchronization primitives are provided to keep the memory consistent. It is also possible for

threads to have some amount of thread-specific data by storing pointers to this data on each thread

stack.

Scheduling policies for lightweight threads can be broadly classified either as non-preemptive,

in which a thread executes until completion or until it decides to willingly yield the processor, or

as preemptive, in which a thread can be interrupted at an arbitrary point during its execution so

that some other thread may execute. Orthogonat to the issue of preemption, thread scheduling

can incorporate a wide range of ca.p_bilities, including priorities, hand-off scheduling, and _rbitrary

run list structures (such as trees). Clearly, there are m_ny design choices to be made for thread

scheduling, and many runtime system designers will want to switch between v_rious policies de-

pending on the state of the system. If a user-level thread package is not useful to a system-level

programmer, lack of control over scheduling is commonly at the root of the cause.

2.2 Open Implementation Analysis and Design

In [18], Kiczales introduces a new approach for the design of substrate software called Open Im-

plementation, and in this section we summarize these ideas. The reader is encouraged to examine

[18] and [20] for more details on this design philosophy.

We have already sta.ted that black-box abstractions do not always work because there are

times when the best implementation strategy for an abstraction cannot be determined without

knowing how the abstraction will be used in a given situation [18]. So, what happens when a

programmer using a black-box abstraction is confronted with conflict between how the abstraction

is implemented and how the abstraction should be implemented? Since the current implementation

is hidden within the internal portion of the black-box (as depicted in Figure 1), the programmer

must "code around" the problem. This results in either hematomas of duplication or coding between

the lines [18].



A hematomaof duplicationoccurswhena system-levelprogrammerwrites his own threads
package,ensuringthat hisperformanceandflexibility demandsaremet. In additionto increasing
the sizeand complexityof the resultingsystem,hematomascanresult in convolutedcodeabove
the runtimesystem,wherethe black-boxthreadpackagemaystill beused.

Codingbetweenthe linesoccurswhena programmerwritescodein a particularly contorted
wayto getthedesiredperformanceor functionality.Forexample,consideramultithreadedruntime
systemdesignerwhoplansto createanddestroymanythreads.If the underlyingthreadpackage
doesnot providea way to cachethe thread control blocksand thread stacks,the programmer
mighthaveto createserverthreadsthat neverreallydiesothat resourcemanagementoverheads
areminimized.

Theseexamplesdemonstratethat black-boxdesignsoftenhidetoo muchof the implementation
for substratesoftware.While someof the implementationdecisionsaredetailsthat canbe (and
shouldbe)hiddenwithout problem,othersarecrucialto writing efficientsoftwareandshouldbe
exposedin acontrolledmanner.Thesecrucialdesigndecisionsarecalleddilemmas.

The Open Implementation design depicted in Figure 1 provides a mechanism for exposing dilem-

mas to the programmer so that these crucial design decisions can be made on a per-application

basis. This mechanism is represented as a new interface, called the meta interface, that is presented

to the application programmer for altering the behavior of the abstractions presented in the user

interface. The meta interface provides a clean and controlled mechanism for customizing the im-

plementation of substrate software and is the key to the Open Implementation design philosophy.

Section 3.2.2 details the meta interface for OpenThreads.

3 Design

In this section we outline the design of OpenThreads. In Section 3.1 we itemize the issues that

arise when designing a lightweight thread package, and in Section 3.2 we explain how these issues

are exposed to the user in terms of interfaces.

3.1 Dilemmas

We begin this section with an examination of the dilemmas that occur in the design of a thread

package. As we stated in Section 2.2, the key difference between a black box design and an open

implementation design is the level of control over these dilemmas.

3.1.1 Thread States

The lifetime of a thread is marked by a series of transformations between different states. A common

set of thread states includes: being created, being placed onto an active run list, being selected

(scheduled) for execution, being blocked on a mutex or condition variable, and being terminated.

The transitions that take a thread from one state to the next can differ from one thread package to

the next. For example, a blocked thread can either be resumed as an active thread or as a runnable

thread. Figure 2 depicts these states transitions.

Besides the dilemma of where to place a thread that becomes unblocked, there are dilemmas

associated with the transitions between the states. For example, what should be done when a



Figure2: Threadstates

threadiscreatedor terminated?Howaboutwhena threadis in transitionbetweenthe activeand
runnablestates?In existingthreadsystems,thesetransitionsarehiddenfromtheuser.This makes
it impossible,for example,to tracethe executionof a thread, sincethe userwouldneedcontrol
overseveraltransitions.

Our approachto thesedilemmasis to definea set of eventsthat occur (perhapsrepeatedly)
during the life of a thread,and providea mechanismfor specifyinguser-definedactionsto be
performedwheneverathreadencountersoneoftheseevents.Asdepictedin Figure2,the following
eventsaredefinedfor a thread:entry - whena threadfirst beginsexecution;exit - whena thread
is aboutto be terminated;save- whena threadmovesfrom an activestateto a runnablestate;
restore, whena threadmovesfrom a runnablestateto anactivestate;blocked, whena thread
movesfromanactivestateto ablockedstate;andunblocked, whenathreadmovesfrom ablocked
stateto eitheranactiveor runnablestate.

In addition to thesethread-specificstates,therearesystemstatesof either executingsome
runnablethreador beingidle becauseall remainingthreadsareblocked.Theidle systemstateis
oftenachievedwhenall threadsarewaitingfor someexternalevent,suchasamessageor interrupt,
to occur.Thetransitionof thesystemfromthe activestateto the idle stateis alsoimportant, and
sowedefinethreemoreeventsto coverthis situation: idle begin - whenall threadsin the system
becomeblocked;idle spin - the durationof beingidle; andidle end - whensomethread becomes
runnableagain.

3.1.2 Thread Lists and Scheduling

A thread list is a data structure used to hold a collection of threads. The list may be used to hold

threads that are ready to execute, called a run list, or may be used to hold threads in some other

state, such as blocked on a mutex or condition variable. Since all threads must be on some thread

list, state transitions typically involve moving a thread from one list to another. The scheduling

policy for threads is therefore determined by the structure of the thread lists and the implementation

of the operations that remove a thread from a list (get) and place a thread onto a list (put). For

example, simple FIFO scheduling is achieved by using a FIFO queue for a run list, whereas priority

scheduling might involve a tree of FIFO queues, where each leaf of the tree represents a. queue of

threads with the same priority.

Existing thread packages hide the concept of thread lists and provide abstract notions of schedul-

ing for the system, such as FIFO or Round-Robin. However, this black-box approach prevents

system-level programmers from gaining control over the most fundamental part of a thread pack-



age.Forexample,whatif a treestructurewouldbemostefficientfor a run list, orwhat if multiple
run listsaredesired?What if mutexvariablesareto havethreadlistswhicharescheduleddiffer-
ently from the run list, or fromconditionvariableblockedlists?Thesedilemmasaboutthe nature
and behaviorof threadlists needto beexposedto thesystem-levelprogrammer.

Our approachto thesedilemmasis to makethread lists explicit, first-orderentities in the
system,and allow the userto definethe get and put primitivesfor eachlist. Thread lists (or
queues)are then explicitly associatedwith mutexes,conditionvariables,and runnablethreads.
OpenThrea.dsprovidesmechanismsfor specifyingwhichlist a threadis to beplacedontowhenyield-
ing (or_thread_yield_onto)and wheninitializing a thread(asanargumentto ot_thread.Xnit).

Note that although there are multiple thread lists, only one list may be designated as the offficial

"run list" at any time. The run list is specified as an argument to the or_begin_mr function.

3.1.3 Context Switching Modes

Every thread maintains state information that defines the thread. Minimally, this set includes the

stack pointer, the instruction pointer, and the contents of the live registers. During a context switch

between two threads, the state information of the old thread is saved and the state information of

the new thread is restored.

Existing thread packages treat all context switches the same with respect to the state of a

thread. However, this should not always be the case. Some threads, for example, may only use

the integer registers, so saving and restoring the floating point registers at each context switch is a

waste of precious cycles. However, since the thread package designer doesn't know if threads will

be using the floating point registers or not, a conservative decision is made and all registers are

saved.

Our approach to these dilemmas is to allow the context of a thread to be defined as either

involving all registers, only the integer registers, or no registers. A more flexible approach might

allow a user-defined function that saves the exact thread state needed, but such a function would

almost certainly be platform-dependent, thus violating portability.

3.1.4 Stack Management

Often, the most time-consuming portion of creating a new thread is allocating and aligning the

thread stack. While most thread packages offer support to change the size of a thread's stack, few

allow the programmer to specify the stack allocation policy. Lack of control over this dilemma is

another common reason why multithreaded runtime systems abandon common thread packages.

For example, the programmer may want to cache the stacks because threads are created'-and

destroyed rapidly, but there are never more than a small number of threads alive at any one time.

Another example is when the programmer wishes to enable checks on stack overflow, or to resize

the stack at runtime to enable stack growth.

Our approach to this dilemma is to allow the user to specify stack allocation and release policies.

3.1.5 Timing and Profiling

Existing thread systems offer little or no support for thread timing and profiling. While most

application-level programmers may not care about how many times a given thread is switched or

6



what thetotal executiontime for a threadis, mostsystem-levelprogrammersdocareabout these
measures.However,becausethe statetransitionsthat definethesemeasuresarehiddenfrom the
user,it is usuallyimpossibleto gatherthesestatisticsevenif theuserwantsto.

Our solutionto this dilemmaisto allowtheuserto takeadvantageof ourexposedthreadevents
and install monitoringcodethat will beexecutedwhenevera threadreachesoneof theseevents.
For example,to count the numberof timesthat a threadis switchedfrom runnableto active,we
cansimplyinstall thefollowingfunctionto beinvokedwheneverathreadtriggersthe restore event:

void bump () {

ctxswCounter++ ;

}

3.2 Interfaces

We now discuss a mechanism for making these dilemmas available to the user in a clean and well-

defined manner. Recall that in Figure 1, there are two interfaces presented to the user rather than

just one. The first is the user-level interface, which defines the abstractions that are supported.

The second is the meta-level interface, which defines how to change the behavior of the abstractions

supported in the user-level interface. Thus, the meta-level interface represents the realization of

our design dilemmas. We call this a meta-interface because it is an interface that describes how

another interface (the user-interface) should behave.

3.2.1 The User-level Interface

The user-interface for OpenThreads provides a simple and clean mechanism for creating threads,

mutex variables, condition variables, and thread lists. Noticeably absent from our interface are the

plethora of routines that define the API for packages like pthreads. This is possible because the

user-interface for OpenThreads is not concerned with modifying the behavior of its abstractions.

As with any thread package, OpenThreads allows the programmer to create new threads, yield,

exit, wait for a mutex, and block on a condition variable. These functions are detailed in Figure 3.

There are a few calls in this interface that bear special attention. First, the thread initialization

function used to create a thread, ot_thread_init, takes a thread list (queue) as an argument, and

places the newly created thread on that list. This gives the programmer explicit control over man-

aging run lists. Second, the or_thread_yield_onto routine is used to specify a destination thread

list upon which the existing thread will be put. Again, this gives the programmer explicit con_rrol

over thread list management. Third, the ot_thread_setspecific and o'c_thread_getspecific

calls are used to assign and retrieve a single generic pointer contained within the thread control

block. This single pointer is meant to satisfy the needs of multithreaded runtime system designers,

who all employ the concept of a task within their systems. Each task contains an instance of an

OpenThread, which will perform the actual context switching between the tasks. However, since

the current thread can only be defined in terms of an OpenThread, finding the current task re-

quires a pointer from the OpenThread control block back to the surrounding task. Any additional

thread-specific data can be multiplexed atop this single pointer without all users having to pay the

cost in time and space to maintain an arbitrarily-long list of thread-specific pointers.



extern void ot_init (int *argc, char *argv[], char *pkg_prefix);

extern void ot_done (void);

extern void or_begin_mr (ot_queue_t *runq);

extern void or_end_mr (void);

typedef void (ot_userft)(void *pO);

extern void ot_thread_init (ot_thread_t *thread, ot_userf_t *start,

void *args, unsigned rid, ot_queue_t *runq);

extern void or thread_yield (void);

extern void or_thread_yield_onto (ot_queue_t *destq);

extern void ot thread_exit (void);

extern unsigned ot_thread_id (void);

extern ot_threadt *ot_current_thread (void);

extern void ot_thread_setspecific (ot_thread_t *thread, void *ptr,

void (*cleanup)(void*));

extern void *ot_thread_getspecific (ot threadt *thread);

extern

extern

extern

extern

extern

void ot_queueinit (ot_queuet *q);

void ot mutex_init (ot_mutex_t *m, ot queue_t *blockq);

void ot_mutex_lock (ot_mutex_t *m);

int ot_mutextrylock (ot_mutex_t *m);

void ot_mutex_unlock (ot_mutex_t *m);

extern

extern

extern

void ot_cond_init (ot_cv_t *cv, ot_queuet *blockq,

ot_mutex t *m);

void ot_cond_wait (ot_cvt *cv);

void ot_cond_bcast (ot_cv t *cv);

Figure 3: OpenThreads user interface



void main (int argc, char *argv[])

{

ot_thread_t threads[NT] ;

ot_queuet runq;

ot_init (_argc, argv, "or_");

otqueue_init (_runq);

for (int i = O; i < NT; i++)

ot_thread_init (_threads[i], entry_func, arg, &runq);

. ,.

or_begin_mr (Erunq);

/* == begin multithreaded execution == */

or_end_mr ();

/* == end multithreaded execution == */

ot_done ();

Figure 4: Sample code for initiating multithreaded execution

One problem with many thread packages is the vagueness with which multithreaded execu-

tion begins and ends, and what happens to the original thread of control within the process.

OpenThreads makes these points of control explicit by creating two functions that mark the begin-

ning and ending of multithreaded execution: or_begin_mr and or_end_mr, respectively. In between

these calls the original process thread of control, now called the process thread, is allowed to exe-

cute a.ny other code it desires, and is treated just like any other thread in the system. It can, for

example, be blocked on a condition variable or be re-scheduled for execution on the run list. When

the ot_end_mt call returns, the system is single-threaded again and another round of multithreaded

execution may be initiated if desired. There are also functions for initializing the OpenThreads

package (otinit) and cleaning up after the package (or_done). Sample code for a process initiating

multithreaded execution is given in Figure 4.

3.2.2 The Meta-level Interface

The OpenThreads meta interface (Figure 5) provides the hooks needed to customize the des_ign

dilemmas listed in Section 3.1. In most cases, these decisions are set up as an event that triggers

user-specified actions, or callback functions, to occur. For example, the otto_push_callback routine

allows the user to specify a callback function to be invoked whenever the specified event is triggered.

As mentioned in Section 3.1.1, events can be either thread-specific, which occurs whenever any

thread enters a specific state, or global, which occurs when the system itself enters a new state.

The valid thread-specific events are thread entry, thread exit, thread save, thread restore, thread

blocking, and thread unblocking. The valid global events are system idle begin, system idle spin,

and system idle end. Callback functions for each event are maintained in a stack, so that multiple

functions can be associated with each event. For example, this would allow a set of tracing functions



extern void otm_init (void);
extern void otm_install_stackalloc(otm_sallocf_t*salloc,

otm_sfreef_t *sfree);

extern void otm_define_switch (otm_switch_mode_t,ot_thread_t *t);

extern void otm_push_callback (int cbid, otm_callback_t *cbfunc);

extern otm_callback_t *otm_pop_callback (int cbid);

extern void otm_install_queue (ot_queue_t*q, unsigned qlink_size,

unsigned qimp_size, otm_qinitf_t *init,

otm_qgetf_t *get, otm_clputf_t*put);

Figure 5: OpenThreads meta interface

extern void *ors_stack_align (void *stack);
extern ots_stack_t *ors_stack_pointer (void *storage, int size);

extern ots_stack *otsstack_init (ots_stack_t*sp, ots_userf_t *userf,

void *userarg, ots_inif_t *initf, void *initarg);

extern void *ors_switch_all (ots_helperf_t*helper, void *argl,

void *arg2, ots_stack_t *new);
extern void *ots_lock init (ots_lock_tlock);

extern int ors_lock_acquire (ots_lock_tlock);
extern void void ors_lock_release (ots_lockt lock);

Figure 6: OpenThreads system interface

to be installed atop a set of timing functions. All function for an event are called in stack order,

and the otto_pop_callback routine provides a way of clearing or rearranging the callback stack of

a thread at any time.

The otto_install_queue function allows the user to provide implementations for the get and

put functions of a thread list, as well as to define how large the link components of the thread list

need to be. OpenThreads will invoke the get and put functions of a list whenever a scheduling

decision needs to be made. This allows for multiple, user-defined thread lists to be used at the

same time within OpenThreads, giving the user total control over scheduling. The interface allows

different implementations to be associated with different thread lists at the same time.

The otto_define_switch routine allows the user to define the thread switching mode for a_iven

thread (or for all threads). The valid switching modes are all, integer, or none, referring to the

registers to be saved.

3.2.3 The System-level Interface

One of the key elements in the design of a multithreaded runtime system is portability. Since

parallel and concurrent languages execute in a wide variety of environments, their runtime systems

must support a wide-range of platforms.

To enable portability, we added a system-level interface (see Figure 6) to the traditional Open

10
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Figure 7: OpenThreads design

Implementation design, resulting in the overall design of OpenThreads with three interfaces, as

depicted in Figure 7. The system interface provides a single place for mapping all dependencies

that cannot be satisfied from within the OpenThreads implementation.

These routines are then mapped (usually with symbolic constants) onto platform-specific rou-

tines that provide the necessary functionality. Therefore, a successful port of OpenThreads requires

modification of exactly one header file in a clean and well-defined way. Note that the routines at this

level are decidedly low-level, so that additional overheads are not incurred. The thread initialization

and context switching routines intentionally mimic the QuickThreads [17] macros, which are an

excellent example of how very-low-level thread support can be provided in a machine-independent

manner.

4 Discussion

In this section we discuss our design in terms of our original design goals and in terms of open

issues that have yet to be addressed or resolved.

4.1 Design Goals

The design of OpenThreads is based on three essential goals: flexibility, efficiency, and portability.

Our hypothesis is that substrate software requires success for each goal, and that existing lightweight

thread packages fail in one or more of these goals. For example, one may argue that pthreads [16]

is efficient and provides portability because its the "standard," but it falls short in provid£ng

the flexibility demanded by most system-level programmers. For example, using pthreads it is

impossible to trace thread execution when the scheduling policy is round-robin (preemptive).

We now examine our Open Implementation of lightweight threads with respect to these design

goals:

1. Flexibility.

The flexibility of our design is manifest by the meta-level interface, and the ability of a

programmer to provide her own solutions to the design dilemmas outlined in Section 3.1.
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QuickThreadsSTP
OpenThreads
Pthreads

0.9 5.6 6.5 10.5 1.2 2.7
1.3 7.0 7.2 13.5 2.3 3.1

23.8 17.5 28.5 160.3 -- --

Table1: OpenThreadsrawperformanceonvariousarchitectures;ctxsw is the time in microseconds

for a context switch and create is the time in microseconds to create a single thread with default

stacksize (usually 8Kb).

I Amoeba Solarisctxsw I create ctxswlcreate

Panda 40.2 108.9 34.1 417.4

Panda-OT 35.4 262.7 7.4 62.0

Table 2: Performance of Panda thread packages on various platforms.

,

As a concrete example of its flexibility, we have adapted the Panda multithreaded runtime

system [7] to use OpenThreads for implementing its tasks.

Efficiency.

With regards to performance, we can report on the performance of OpenThreads in com-

parison to a POSIX Pthreads implementation and the QuickThreads package upon which

OpenThreads is built. The comparison with Pthreads demonstrates the efficiency of OpenThreads

for doing basic multithreading. The comparison with QuickThreads shows how much overhead

we've added to the underlying low-level switching routines. As a demonstration of portability,

we present these tests on three different processor architectures: the MIPS R4400, the Sun

SPARC, and the DEC ALPHA. The measurements are given in Table 1. All numbers were

gathered using averages for multiple runs, with an initial untimed run used to reduce cache

miss effects. For context switches, OpenThreads saved all registers.

A second set of experiments evaluates the flexibility of OpenThreads to support the Panda

runtime system. The hand-crafted Panda thread package was developed for the Amoeba

operating distributed system and runs on 50 MHz SPARC processors with 32 Mbyte of

memory and 4 Kbyte instruction and 2 Kbyte data caches (direct mapped). To achieve high

performance the Panda scheduler is not built on top of Amoeba's kernel threads, but it was

derived from a user-level thread package developed at MIT by Wallach and Kaashoek. These

results are presented in Table 2.

Given the extensive tuning performed on the Panda thread package and the overhead of

OpenThreads, we expected the generic Panda threads implemented with OpenThreads (Panda-

OT) to perform less than the hand-crafted Panda threads. The performance results presented

in Table 2, however, show that Panda-OT has the fastest context switch time on Amoeba:
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40.2 #s (Panda) versus 35.4 #s (Panda-OT). Examination of the low-level context switch

code provided by QuickThreads (used in OpenThreads) revealed that it contains a SPARC

specific optimization that saves one register-window underflow trap. Saving one trap to the

Amoeba kernel accounts for approximately 7 #s. Since we did not want to change Panda's

implementation for the sake of making this comparison, we have provided the empirical num-

bers instead. However, the same optimization could be applied to the Panda threads, which

would negate the performance advantage of OpenThreads for this experiment. In the end,

we see about a 6% overhead for OpenThreads, which is a small price to pay for the added

flexibility and portability.

Unlike the context switch results, the results for thread creation show that Panda-OT per-

forms poorly in comparison to native Panda; creating a thread with Panda-OT is more than

twice as expensive as with native Panda. This large overhead, however, is not a consequence

of the flexibility of OpenThreads, but of a slight difference in scheduling policy of both thread

packages. Panda-OT implements true priority scheduling, and therefore takes a scheduling

decision as soon as the new thread is created and placed on the run queue. This results

in a. context switch to the newly created thread, which initializes itself and then terminates

immediately. Once the thread has exited, another context switch occurs to transfer control

back to the main thread. The Panda scheduler, on the other hand, does not take a schedul-

ing decision until the main thread voluntarily yields control. The difference in scheduling

policy causes Panda-OT to incur two additional context switches, thus accounting for the

performance difference.

Table 2 also contains performance numbers for Panda-OT on Solaris. In this case we com-

pare Panda_OT to the original Panda implementation that uses native Solaris threads. The

performance was measured on a 70 Mhz SPARCstation 4 with 64 Mb of memory running So-

laris 2.4. Panda-OT performs much better than native Panda: Pa.nda-OT switches between

threads over four times as fast and creates new threads over six times as fast. Since we do not

have the source code of Solaris threads available, it is difficult to determine the exact causes

of this great difference. We believe, however, that part of the explanation is the ability of

Solaris to support a mixture of kernel and user threads. This functionality adds considerably

to the complexity of the threads system, and requires expensive precautions to guard against

preemption at various levels.

Portability.

Our system-level interface isolates all underlying dependencies in a single file that needs_o

be changed for each new platform. In some cases, there are no changes required at all. This

is due to the fact that OpenThreads is currently mapping its low-level thread operations onto

QuickThreads [17], which is already very portable. The Panda port runs the same code on

both the Solaris and Amoeba platforms, and regular Orca programs were run to ensure the

stability of the port.

OpenThreads has been tested on the Sun SuperSPARC and UltraSPARC architectures under

both SunOS 4.1 and Solaris 2.5, the MIPS R4400 architecture under IRIX 5.3, and the Alpha

AXP architecture under DEC OSF-1. In addition, QuickThreads runs on the Intel 80x86, the
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Motorola88000,the HP-PA,the KSR,andtheVAX. As a result,OpenThreadscaneasilybe
portedto thesearchitectures.

4.2 Open Issues

Therearestill a fewopenissuesthat remainin the designand implementationof OpenThreads.

.

.

°

°

Thread identification is the task of determining which thread, or more specifically, which

thread control block is currently active at any given time. One way to do this is to reserve a

global register to hold this pointer. This is the approach taken by Solaris threads [28], and

has the advantage of being very fast and not requiring global memory. However, compiler

and architecture support are required to reserve this register, and the loss of a register on

RISC-based architectures is always cause for concern. Another approach is to keep the current

thread pointer on a well-known offset in each thread stack [6]. This approach eliminates the

need for both global memory and register space, but requires fancy stack alignments. Another

approach, and the one currently employed by OpenThreads, is to use a global variable for

storing the current thread pointer. This approach is the easiest to implement, does not

require compiler support for extra registers, and does not require fancy stack manipulation.

However, it does require per-processor global memory. A formal investigation regarding the

best method for thread identification is still an open issue.

Kernel threads represent an opportunity to increase processor utilization in the face of block-

ing kernel calls, such as I/O. However, multiplexing user-level threads atop kernel threads

requires a little finesse. We are in the process of revising OpenThreads to be safe in the

presence of kernel threads. This requires protecting critical regions with kernel locks and

identifying all global data as either shared among the kernel threads or private. Kernel

thread private global data, such as the pointer to the current thread, needs to be stored as

thread-specific data for each kernel thread. Powell et al. [24] provide a discussion of this

mapping for Solaris threads mapped onto LWPs. Another issue to be addressed in support-

ing kernel threads is the impact of kernel thread decisions on the meta-level interface. For

example, some kernel threads might support features that allow for better optimization of

the user threads, such as upcalls. To what degree should these decisions be supported in the

meta-interface? Kernel threads also raise the specter of multiprocessor issues, which we have

completely ignored to this point.

Multithreaded runtime systems require both thread and communication component_ and

both must work well together. We are in the process of examining the issues regarding the

combination of threads with communication models, and plan to test the flexibility of our

system for performing platform-independent optimizations using a combination of thread and

communication modules. Other systems combining threads with communication primitives

include Chant [14], Nexus [12], PVM-threads [21], and MPI-threads [10].

Signals. Most papers on lightweight threads include long and involved discussions about signal

handling in the presence of threads. We will avoid this discussion for now, and simply state

that OpenThreads currently exposes all threads to the same signal mask. We do, however,
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ensure that if a signal arrives while the system is in an atomic section, the signal handler is

delayed until after the atomic section has been completed.

Debugging. Debugging multithreaded systems has always been a trying experience because

there are almost no debuggers that recognize the threads. OpenThreads does provide critical

support in this regard by allowing traces to be made for thread state transitions by installing

print statements at the various thread-specific event points. However, more sophisticated

debugging tools are clearly required.

5 Related Research

OpenThreads represents a novel approach to the design of user-level threads, in which the user

is given the opportunity to change the behavior of high-level abstractions in a well-defined man-

ner. Many thread packages, such as pthreads [16], support an extensive user-interface with some

behavior-modifying commands intertwined (such as attribute specification for threads). However,

these systems do not take a systematic approach to exposing the critical 'design dilemmas and, as

a result, fall short in providing the flexibility required by most system-level programmers.

QuickThreads [17] is a thread-building toolkit that offers platform independent micro-instructions

for managing thread stacks. QuickThreads is similar to assembly language programming in terms

of flexibility, speed, and complexity. OpenThreads builds on the QuickThreads design philosophy

of keeping things simple, and provides high-level abstractions whose behavior can be modified by

the user in a well-defined manner.

The initial description of Open Implementation Analysis and Design [18] provided the motiva-

tion for much of this work. However, the initial description fails to talk about portability concerns.

As a result, we extended the design to include a new system-level interface that unifies and defines

all system dependencies.

6 Conclusions

It would seem that the last thing we need these days is another user-level thread package. From the

standpoint of an application-level programmer this is probably true. However, from the standpoint

of a system-level programmer building multithreaded runtime systems, I would disagree. The

evidence suggests that none of the current thread packages are being widely used by system-level

programmers. In this paper we introduce the design of a user-level thread package for substrate

software. The idea here is to identify all of the crucial design dilemmas that occur in building-a

thread package, and provide a clean and well-defined way for users to change these decisions. The

result is a thread package with a simple user interface and a powerful meta interface for changing

the behavior of the abstractions defined by the user interface. A system interface should also be

used to isolate and define all underlying dependencies.

We have designed and built OpenThreads as a proof-of-concept for the ideas outlined in this pa-

per, and are in the process of adapting several multithreaded runtime systems to use OpenThreads.

We will report on the success of these attempts in the future.
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